Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 538
Filtrar
1.
Nature ; 616(7955): 190-198, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36949198

RESUMO

The membrane-integrated synthase FKS is involved in the biosynthesis of ß-1,3-glucan, the core component of the fungal cell wall1,2. FKS is the target of widely prescribed antifungal drugs, including echinocandin and ibrexafungerp3,4. Unfortunately, the mechanism of action of FKS remains enigmatic and this has hampered development of more effective medicines targeting the enzyme. Here we present the cryo-electron microscopy structures of Saccharomyces cerevisiae FKS1 and the echinocandin-resistant mutant FKS1(S643P). These structures reveal the active site of the enzyme at the membrane-cytoplasm interface and a glucan translocation path spanning the membrane bilayer. Multiple bound lipids and notable membrane distortions are observed in the FKS1 structures, suggesting active FKS1-membrane interactions. Echinocandin-resistant mutations are clustered at a region near TM5-6 and TM8 of FKS1. The structure of FKS1(S643P) reveals altered lipid arrangements in this region, suggesting a drug-resistant mechanism of the mutant enzyme. The structures, the catalytic mechanism and the molecular insights into drug-resistant mutations of FKS1 revealed in this study advance the mechanistic understanding of fungal ß-1,3-glucan biosynthesis and establish a foundation for developing new antifungal drugs by targeting FKS.


Assuntos
Microscopia Crioeletrônica , Glucosiltransferases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Antifúngicos/farmacologia , beta-Glucanas/metabolismo , Domínio Catalítico , Membrana Celular/química , Membrana Celular/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/ultraestrutura , Testes de Sensibilidade Microbiana , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
2.
J Biol Chem ; 299(2): 102861, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603766

RESUMO

Phosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood. Herein, we apply an integrative structural biology approach to investigate interactions of the yeast PITP Sec14 with small-molecule inhibitors (SMIs) of its phospholipid exchange cycle. Using a combination of X-ray crystallography, solution NMR spectroscopy, and atomistic MD simulations, we dissect how SMIs compete with native Sec14 phospholipid ligands and arrest phospholipid exchange. Moreover, as Sec14 PITPs represent new targets for the development of next-generation antifungal drugs, the structures of Sec14 bound to SMIs of diverse chemotypes reported in this study will provide critical information required for future structure-based design of next-generation lead compounds directed against Sec14 PITPs of virulent fungi.


Assuntos
Antifúngicos , Desenho de Fármacos , Proteínas de Transferência de Fosfolipídeos , Proteínas de Saccharomyces cerevisiae , Transporte Biológico/efeitos dos fármacos , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Transdução de Sinais , Antifúngicos/química , Antifúngicos/farmacologia
3.
Sci Rep ; 12(1): 1429, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082341

RESUMO

The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma's reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.


Assuntos
Descoberta de Drogas , Transportador de Glucose Tipo 3/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 3/antagonistas & inibidores , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 4/antagonistas & inibidores , Transportador de Glucose Tipo 4/química , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 5/antagonistas & inibidores , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Compostos Heterocíclicos com 3 Anéis/química , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química
4.
Molecules ; 26(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34641343

RESUMO

(-)-Epigallocatechin gallate (EGCG), the chief dietary constituent in green tea (Camellia sinensis), is relatively unstable under oxidative conditions. This study evaluated the use of non-thermal dielectric barrier discharge (DBD) plasma to improve the anti-digestive enzyme capacities of EGCG oxidation products. Pure EGCG was dissolved in an aqueous solution and irradiated with DBD plasma for 20, 40, and 60 min. The reactant, irradiated for 60 min, exhibited improved inhibitory properties against α-glucosidase and α-amylase compared with the parent EGCG. The chemical structures of these oxidation products 1-3 from the EGCG, irradiated with the plasma for 60 min, were characterized using spectroscopic methods. Among the oxidation products, EGCG quinone dimer A (1) showed the most potent inhibitory effects toward α-glucosidase and α-amylase with IC50 values of 15.9 ± 0.3 and 18.7 ± 0.3 µM, respectively. These values were significantly higher than that of the positive control, acarbose. Compound 1, which was the most active, was the most abundant in the plasma-irradiated reactant for 60 min according to quantitative high-performance liquid chromatography analysis. These results suggest that the increased biological capacity of EGCG can be attributed to the structural changes to EGCG in H2O, induced by cold plasma irradiation.


Assuntos
Camellia sinensis/química , Catequina/análogos & derivados , Inibidores de Glicosídeo Hidrolases/química , Gases em Plasma/efeitos adversos , alfa-Amilases/antagonistas & inibidores , Animais , Catequina/química , Catequina/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Estrutura Molecular , Oxirredução , Pâncreas/enzimologia , Folhas de Planta/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Suínos , Água/química , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
5.
Open Biol ; 11(8): 200415, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343464

RESUMO

Protein S-acylation or palmitoylation is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of proteins through a thioester bond. Palmitoylation and palmitoyltransferases (PATs) have been linked to several types of cancers, diseases of the central nervous system and many infectious diseases where pathogens use the host cell machinery to palmitoylate their effectors. Despite the central importance of palmitoylation in cell physiology and disease, progress in the field has been hampered by the lack of potent-specific inhibitors of palmitoylation in general, and of individual PATs in particular. Herein, we present a yeast-based method for the high-throughput identification of small molecules that inhibit protein palmitoylation. The system is based on a reporter gene that responds to the acylation status of a palmitoylation substrate fused to a transcription factor. The method can be applied to heterologous PATs such as human DHHC20, mouse DHHC21 and also a PAT from the parasite Giardia lamblia. As a proof-of-principle, we screened for molecules that inhibit the palmitoylation of Yck2, a substrate of the yeast PAT Akr1. We tested 3200 compounds and were able to identify a candidate molecule, supporting the validity of our method.


Assuntos
Aciltransferases/antagonistas & inibidores , Lipoilação , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Giardia lamblia/efeitos dos fármacos , Giardia lamblia/crescimento & desenvolvimento , Giardia lamblia/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade por Substrato
6.
Molecules ; 26(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299598

RESUMO

In this work we introduce a novel filtering and molecular modeling pipeline based on a fingerprint and descriptor similarity procedure, coupled with molecular docking and molecular dynamics (MD), to select potential novel quoinone outside inhibitors (QoI) of cytochrome bc1 with the aim of determining the same or different chromophores to usual. The study was carried out using the yeast cytochrome bc1 complex with its docked ligand (stigmatellin), using all the fungicides from FRAC code C3 mode of action, 8617 Drugbank compounds and 401,624 COCONUT compounds. The introduced drug repurposing pipeline consists of compound similarity with C3 fungicides and molecular docking (MD) simulations with final QM/MM binding energy determination, while aiming for potential novel chromophores and perserving at least an amide (R1HN(C=O)R2) or ester functional group of almost all up to date C3 fungicides. 3D descriptors used for a similarity test were based on the 280 most stable Padel descriptors. Hit compounds that passed fingerprint and 3D descriptor similarity condition and had either an amide or an ester group were submitted to docking where they further had to satisfy both Chemscore fitness and specific conformation constraints. This rigorous selection resulted in a very limited number of candidates that were forwarded to MD simulations and QM/MM binding affinity estimations by the ORCA DFT program. In this final step, stringent criteria based on (a) sufficiently high frequency of H-bonds; (b) high interaction energy between protein and ligand through the whole MD trajectory; and (c) high enough QM/MM binding energy scores were applied to further filter candidate inhibitors. This elaborate search pipeline led finaly to four Drugbank synthetic lead compounds (DrugBank) and seven natural (COCONUT database) lead compounds-tentative new inhibitors of cytochrome bc1. These eleven lead compounds were additionally validated through a comparison of MM/PBSA free binding energy for new leads against those obtatined for 19 QoIs.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia , Avaliação Pré-Clínica de Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/química , Proteínas de Saccharomyces cerevisiae/química
7.
Nat Commun ; 12(1): 3483, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108481

RESUMO

The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2'-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Adenosina Trifosfatases/química , Compostos de Boro/química , Proteínas de Saccharomyces cerevisiae/química , Domínio AAA , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Compostos de Boro/farmacologia , Resistência a Medicamentos/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Mutação , Nucleotídeos/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Iran Biomed J ; 25(4): 255-64, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33992037

RESUMO

Background: The methylotrophic yeast Pichia pastoris is an appealing production host for a variety of recombinant proteins, including biologics. In this sense, various genetic- and non-genetic-based techniques have been implemented to improve the production efficiency of this expression platform. Loss of supression (Los1) encodes a non-essential nuclear tRNA exporter in Saccharomyces cerevisiae, which its deletion extends replicative lifespan. Herein, a los1-deficient strain of P. pastoris was generated and characterized. Methods: A gene disruption cassette was prepared and transformed into an anti-CD22-expressing strain of P. pastoris. A δ los1 mutant was isolated and confirmed. The drug sensitivity of the mutant was also assessed. The growth pattern and the level of anti-CD22 single-chain variable fragment (scFv) expression were compared between the parent and mutant strains. Resuults: The los1 homologue was found to be a non-essential gene in P. pastoris. Furthermore, the susceptibility of los1 deletion strain to protein synthesis inhibitors was altered. This strain showed an approximately 1.85-fold increase in the extracellular level of anti-CD22 scFv (p < 0.05). The maximum concentrations of total proteins secreted by δ los1 and parent strains were 125 mg/L and 68 mg/L, respectively. Conclusion: The presented data suggest that the targeted disruption of los1 homologue in P. pastoris can result in a higher expression level of our target protein. Findings of this study may improve the current strategies used in optimizing the productivity of recombinant P. pastoris strains.


Assuntos
Deleção de Genes , Marcação de Genes/métodos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Sobrevivência Celular/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores
9.
Cells ; 10(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924665

RESUMO

Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.


Assuntos
Fluoretos/toxicidade , Lítio/toxicidade , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Fosfatos/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Estudo de Associação Genômica Ampla , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Anotação de Sequência Molecular , Estresse Oxidativo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Int J Biol Macromol ; 166: 259-267, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115652

RESUMO

Inhibition of α-glucosidase and non-enzymatic glycation is regarded as an effective method to prevent and treat type 2 diabetes and its complications. In this study, the inhibition of sinensetin on α-glucosidase and non-enzymatic glycation was studied with multi-spectroscopic techniques and molecular docking analysis. The results of fluorescence spectroscopy analysis indicated that sinensetin quenched the endogenous fluorescence of α-glucosidase in static manner. The binding of sinensetin with α-glucosidase was a spontaneous process primarily driven by hydrophobic interaction. At 298 K, the binding constant was (5.70 ± 0.12) × 104 L·mol-1 and the binding site number was 1. The conformation of α-glucosidase was altered by sinensetin, which was revealed by circular dichroism (CD), FTIR spectra, synchronous fluorescence and three-dimensional (3D) fluorescence spectroscopy methods. Molecular docking analysis demonstrated that sinensetin interacted with the amino acid residues of α-glucosidase, which might prevent the entrance of substrate, leading to the decrease of catalytic efficiency of α-glucosidase. Furthermore, glycation assays showed that sinensetin stabilized the structure of bovine serum albumins (BSA), interacted with BSA, strongly inhibited the formation of dityrosine, N'-formylkynurenine and advanced glycation end products (AGEs). This study provided useful information concerning sinensetin preventing and treating type 2 diabetes and its related complications.


Assuntos
Flavonoides/química , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Proteínas de Saccharomyces cerevisiae/química , alfa-Glucosidases/química , Sítios de Ligação , Flavonoides/farmacologia , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Cinética , Cinurenina/análogos & derivados , Cinurenina/química , Cinurenina/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , alfa-Glucosidases/metabolismo
11.
J Biochem Mol Toxicol ; 35(4): e22688, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33368871

RESUMO

A series of new benzofuran-1,3,4-oxadiazole containing 1,2,3-triazole-acetamides 12a-n as potential anti-α-glucosidase agents were designed and synthesized. α-Glucosidase inhibition assay demonstrated that all the synthesized compounds 12a-n (half-maximal inhibitory concentration [IC50 ] values in the range of 40.7 ± 0.3-173.6 ± 1.9 µM) were more potent than standard inhibitor acarbose (IC50 = 750.0 ± 12.5 µM). Among them, the most potent compound was compound 12c, with inhibitory activity around 19-fold higher than acarbose. Since the most potent compound inhibited α-glucosidase in a competitive mode, a docking study of this compound was also performed into the active site of α-glucosidase. In vitro and in silico toxicity assays of the title compounds were also performed.


Assuntos
Acetamidas , Inibidores de Glicosídeo Hidrolases , Oxidiazóis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , alfa-Glucosidases/química , Acetamidas/síntese química , Acetamidas/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Oxidiazóis/síntese química , Oxidiazóis/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química
12.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143019

RESUMO

Environmental and intracellular factors often damage DNA, but multiple DNA repair pathways maintain genome integrity. In yeast, the 26S proteasome and its transcriptional regulator and substrate Rpn4 are involved in DNA damage resistance. Paradoxically, while proteasome dysfunction may induce hyper-resistance to DNA-damaging agents, Rpn4 malfunction sensitizes yeasts to these agents. Previously, we proposed that proteasome inhibition causes Rpn4 stabilization followed by the upregulation of Rpn4-dependent DNA repair genes and pathways. Here, we aimed to elucidate the key Rpn4 targets responsible for DNA damage hyper-resistance in proteasome mutants. We impaired the Rpn4-mediated regulation of candidate genes using the CRISPR/Cas9 system and tested the sensitivity of mutant strains to 4-NQO, MMS and zeocin. We found that the separate or simultaneous deregulation of 19S or 20S proteasome subcomplexes induced MAG1, DDI1, RAD23 and RAD52 in an Rpn4-dependent manner. Deregulation of RAD23, DDI1 and RAD52 sensitized yeast to DNA damage. Genetic, epigenetic or dihydrocoumarin-mediated RAD52 repression restored the sensitivity of the proteasome mutants to DNA damage. Our results suggest that the Rpn4-mediated overexpression of DNA repair genes, especially RAD52, defines the DNA damage hyper-resistant phenotype of proteasome mutants. The developed yeast model is useful for characterizing drugs that reverse the DNA damage hyper-resistance phenotypes of cancers.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sistemas CRISPR-Cas , Dano ao DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA/antagonistas & inibidores , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
13.
Mech Ageing Dev ; 192: 111381, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045248

RESUMO

Saccharomyces cerevisiae MED2/YDL005C is a subunit of the mediator complex (Mediator), which is responsible for tightly controlling the transcription of protein-coding genes by mediating the interaction of RNA polymerase II with gene-specific transcription factors. Although a high-throughput analysis in yeast showed that the MED2 protein exhibits altered cellular localization under hypoxic stress, no specific function of MED2 has been described to date. In this study, we first provided evidence that MED2 is involved in the endoplasmic reticulum (ER) stress response and modulation of the replicative life span. We showed that deletion of MED2 leads to sensitivity to the ER stress inducer tunicamycin (TM) as well as a shortened replicative lifespan (RLS), accompanied by increased intracellular ROS levels and hyperpolarization of mitochondria. On the other hand, overexpression of MED2 in wild-type (WT) yeast enhanced TM resistance and extended the RLS. In addition, the IRE1-HAC1 pathway was essential for the TM resistance of MED2-overexpressing cells. Moreover, we showed that MED2 deficiency enhances ER unfolded protein response (UPR) activity compared to that in WT cells. Collectively, these results suggest the novel role of MED2 as a regulator in maintaining ER homeostasis and longevity.


Assuntos
Senescência Celular/genética , Estresse do Retículo Endoplasmático , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tunicamicina/farmacologia , Antivirais/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica , Complexo Mediador/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Estresse Fisiológico/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
14.
Sci Rep ; 10(1): 14605, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884066

RESUMO

Recent advances in CRISPR/Cas9 based genome editing have considerably advanced genetic engineering of industrial yeast strains. In this study, we report the construction and characterization of a toolkit for CRISPR activation and interference (CRISPRa/i) for a polyploid industrial yeast strain. In the CRISPRa/i plasmids that are available in high and low copy variants, dCas9 is expressed alone, or as a fusion with an activation or repression domain; VP64, VPR or Mxi1. The sgRNA is introduced to the CRISPRa/i plasmids from a double stranded oligonucleotide by in vivo homology-directed repair, allowing rapid transcriptional modulation of new target genes without cloning. The CRISPRa/i toolkit was characterized by alteration of expression of fluorescent protein-encoding genes under two different promoters allowing expression alterations up to ~ 2.5-fold. Furthermore, we demonstrated the usability of the CRISPRa/i toolkit by improving the tolerance towards wheat straw hydrolysate of our industrial production strain. We anticipate that our CRISPRa/i toolkit can be widely used to assess novel targets for strain improvement and thus accelerate the design-build-test cycle for developing various industrial production strains.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Engenharia Genética/métodos , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Genoma Fúngico , Plasmídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética
15.
Nat Commun ; 11(1): 3387, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636417

RESUMO

Biosynthesis of glycosylphosphatidylinositol (GPI) is required for anchoring proteins to the plasma membrane, and is essential for the integrity of the fungal cell wall. Here, we use a reporter gene-based screen in Saccharomyces cerevisiae for the discovery of antifungal inhibitors of GPI-anchoring of proteins, and identify the oligocyclopropyl-containing natural product jawsamycin (FR-900848) as a potent hit. The compound targets the catalytic subunit Spt14 (also referred to as Gpi3) of the fungal UDP-glycosyltransferase, the first step in GPI biosynthesis, with good selectivity over the human functional homolog PIG-A. Jawsamycin displays antifungal activity in vitro against several pathogenic fungi including Mucorales, and in vivo in a mouse model of invasive pulmonary mucormycosis due to Rhyzopus delemar infection. Our results provide a starting point for the development of Spt14 inhibitors for treatment of invasive fungal infections.


Assuntos
Antifúngicos/farmacologia , Glicosiltransferases/antagonistas & inibidores , Policetídeos/farmacologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Animais , Proliferação de Células , Modelos Animais de Doenças , Fermentação , Genes Reporter , Glicosilfosfatidilinositóis/biossíntese , Células HCT116 , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Células K562 , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mucorales , Família Multigênica , Rhizopus , Saccharomyces cerevisiae
16.
Elife ; 92020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32701054

RESUMO

Eukaryotic replication origins are licensed by the loading of the replicative DNA helicase, Mcm2-7, in inactive double hexameric form around DNA. Subsequent origin activation is under control of multiple protein kinases that either promote or inhibit origin activation, which is important for genome maintenance. Using the reconstituted budding yeast DNA replication system, we find that the flexible N-terminal extension (NTE) of Mcm2 promotes the stable recruitment of Dbf4-dependent kinase (DDK) to Mcm2-7 double hexamers, which in turn promotes DDK phosphorylation of Mcm4 and -6 and subsequent origin activation. Conversely, we demonstrate that the checkpoint kinase, Rad53, inhibits DDK binding to Mcm2-7 double hexamers. Unexpectedly, this function is not dependent on Rad53 kinase activity, suggesting steric inhibition of DDK by activated Rad53. These findings identify critical determinants of the origin activation reaction and uncover a novel mechanism for checkpoint-dependent origin inhibition.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Fúngico/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae
17.
PLoS Genet ; 16(6): e1008865, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603360

RESUMO

Fpr1 (FK506-sensitive proline rotamase 1), a protein of the FKBP12 (FK506-binding protein 12 kDa) family in Saccharomyces cerevisiae, is a primary target for the immunosuppressive agents FK506 and rapamycin. Fpr1 inhibits calcineurin and TORC1 (target of rapamycin complex 1) when bound to FK506 and rapamycin, respectively. Although Fpr1 is recognised to play a crucial role in the efficacy of these drugs, its physiological functions remain unclear. In a hmo1Δ (high mobility group family 1-deleted) yeast strain, deletion of FPR1 induced severe growth defects, which could be alleviated by increasing the copy number of RPL25 (ribosome protein of the large subunit 25), suggesting that RPL25 expression was affected in hmo1Δfpr1Δ cells. In the current study, extensive chromatin immunoprecipitation (ChIP) and ChIP-sequencing analyses revealed that Fpr1 associates specifically with the upstream activating sequences of nearly all RPG (ribosomal protein gene) promoters, presumably in a manner dependent on Rap1 (repressor/activator site binding protein 1). Intriguingly, Fpr1 promotes the binding of Fhl1/Ifh1 (forkhead-like 1/interacts with forkhead 1), two key regulators of RPG transcription, to certain RPG promoters independently of and/or cooperatively with Hmo1. Furthermore, mutation analyses of Fpr1 indicated that for transcriptional function on RPG promoters, Fpr1 requires its N-terminal domain and the binding surface for rapamycin, but not peptidyl-prolyl isomerase activity. Notably, Fpr1 orthologues from other species also inhibit TORC1 when bound to rapamycin, but do not regulate transcription in yeast, which suggests that these two functions of Fpr1 are independent of each other.


Assuntos
Proteínas de Grupo de Alta Mobilidade/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Calcineurina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Fatores de Transcrição Forkhead/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Proteínas de Grupo de Alta Mobilidade/genética , Peptidilprolil Isomerase/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Tacrolimo/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica
18.
J Med Chem ; 63(14): 7545-7558, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585100

RESUMO

The receptor CRM1 is responsible for the nuclear export of many tumor-suppressor proteins and viral ribonucleoproteins. This renders CRM1 an interesting target for therapeutic intervention in diverse cancer types and viral diseases. Structural studies of Saccharomyces cerevisiae CRM1 (ScCRM1) complexes with inhibitors defined the molecular basis for CRM1 inhibition. Nevertheless, no structural information is available for inhibitors bound to human CRM1 (HsCRM1). Here, we present the structure of the natural inhibitor Leptomycin B bound to the HsCRM1-RanGTP complex. Despite high sequence conservation and structural similarity in the NES-binding cleft region, ScCRM1 exhibits 16-fold lower binding affinity than HsCRM1 toward PKI-NES and significant differences in affinities toward potential CRM1 inhibitors. In contrast to HsCRM1, competition assays revealed that a human adapted mutant ScCRM1-T539C does not bind all inhibitors tested. Taken together, our data indicate the importance of using HsCRM1 for molecular analysis and development of novel antitumor and antiviral drugs.


Assuntos
Carioferinas/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ácidos Graxos Insaturados/metabolismo , Humanos , Carioferinas/química , Carioferinas/metabolismo , Mutação , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
19.
FEMS Yeast Res ; 20(4)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401321

RESUMO

Pinostrobin, a flavonoid compound known for its diverse pharmacological actions, including anti-leukemic and anti-inflammatory activities, has been repeatedly isolated by various screenings, but its action mechanism is still obscure. Previously, pinostrobin was rediscovered in our laboratory using a yeast-based assay procedure devised specifically for the inhibitory effect on the activated Ca2+ signaling that leads the cells to severe growth retardation in the G2 phase. Here, we attempted to identify target of pinostrobin employing the genetic techniques available in the yeast. Using various genetically engineered yeast strains in which the Ca2+-signaling cascade can be activated by the controlled expression of the various signaling molecules of the cascade, its target was narrowed down to Swe1, the cell-cycle regulatory protein kinase. The Swe1 kinase is situated at the downstream of the Ca2+-signaling cascade and downregulates the Cdc28/Clb complex by phosphorylating the Cdc28 moiety of the complex in the G2 phase. We further demonstrated that pinostrobin inhibits the protein kinase activity of Swe1 in vivo as estimated by the decreased level of Cdc28 phosphorylation at Tyr-19. Since the yeast SWE1 gene is an ortholog for the human WEE1 gene, our finding implied a potentiality of pinostrobin as the G2 checkpoint abrogator in cancer chemotherapy.


Assuntos
Cálcio/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Flavanonas/farmacologia , Fase G2/genética , Regulação Fúngica da Expressão Gênica , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Fase G2/fisiologia , Genes Fúngicos , Proteínas Tirosina Quinases/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos
20.
FEBS Lett ; 594(14): 2266-2281, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32359173

RESUMO

The signalling pathway governing general control nonderepressible (Gcn)2 kinase allows cells to cope with amino acid shortage. Under starvation, Gcn2 phosphorylates the translation initiation factor eukaryotic translation initiation factor (eIF)2α, triggering downstream events that ultimately allow cells to cope with starvation. Under nutrient-replete conditions, the translation elongation factor eEF1A binds Gcn2 to contribute to keeping Gcn2 inactive. Here, we aimed to map the regions in eEF1A involved in binding and/or regulating Gcn2. We find that eEF1A amino acids 1-221 and 222-315, containing most of domains I and II, respectively, bind Gcn2 in vitro. Overexpression of eEF1A lacking or containing domain III impairs eIF2α phosphorylation. While the latter reduces growth under starvation similarly to eEF1A lacking domain I, the former enhances growth in a Gcn2-dependent manner. Our studies suggest that domain II is required for Gcn2 inhibition and that eEF1A lacking domain III mainly affects the Gcn2 response pathway downstream of Gcn2.


Assuntos
Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Precipitação Química , Farmacorresistência Fúngica/genética , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Compostos de Sulfonilureia/farmacologia , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...